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Exact and numerical similarity solutions for compressible perturbations to an in-
compressible, two-dimensional, axisymmetric vortex reference flow are presented. The
reference flow consists of a set of two-dimensional, self-similar, incompressible vor-
tices. Similarity variables, which give explicit expressions for the decay rates of the
velocities and thermodynamic variables in the vortex flows, are used to reduce the
governing partial differential equations to a set of ordinary differential equations. The
ODEs are solved analytically and numerically for a Taylor vortex reference flow, and
numerically for an Oseen vortex reference flow. The solutions are employed to study
the dependences of the temperature, density, entropy, dissipation and radial velocity
on the Prandtl number. Additionally, several integral relations, which allow one to
trace the energy transfer in a slightly compressible vortex, are derived.

1. Introduction
Compressible vortices are a significant feature of many fluid flows of physical

and technological interest: turbulent combustion in engines, strong wing-tip vortices,
the generation of aeroacoustic noise by jet aircraft, shock diffraction around sharp
corners, and astrophysical flows such as solar coronae. Compressible vortex models
have become popular for testing non-reflecting boundary conditions and as a basic
component of numerical simulations for studying shock/turbulence interaction. Yet,
despite the frequent occurrence of compressible vortex flows in the literature, the
number of analytical descriptions of this type of flow is quite small (Colonius, Lele &
Moin 1991; Mandella 1987). In the light of this, we will examine analytical self-similar
solutions for slightly compressible vortices. Since, in general, little is known about the
physical nature of compressible vortices, the solutions are examined in detail with
a particular emphasis placed on understanding the dissipation and energy transport
occurring in the vortices and also the role of the Prandtl number.

Herein we concentrate on axisymmetric, compressible, viscous, free vortices with no
axial flow and with constant far-field flow conditions. The fluid under consideration
is taken to be an ideal gas which is thermally and calorically perfect. With these
assumptions the motion of a fully compressible vortex is governed by the two-
dimensional, cylindrically symmetrical, Navier–Stokes equations – which we will refer
to as the full equations.

The dearth of analytical results for compressible free vortices is partly due to their
complexity. In contrast, the two-dimensional motion of an isolated free vortex in an
incompressible flow is well understood. Conservation of mass requires that there is no
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radial velocity in the vortex, and the Reynolds number Re is the only quantity which
governs the evolution of the vortex. For very large Reynolds numbers, Re → ∞, the
flow is essentially inviscid, and the vortex motion is nearly steady. Otherwise, for
Re ∼ O(1) or smaller, the viscous diffusion of angular momentum dominates the
motion.

When the compressibility is important, additional parameters enter the problem.
The flow has an analogous dependence on the Reynolds number, but one must also
include the effects of heat conduction, viscous dissipation, compressibility, and radial
convection on the motion and structure of the vortex (Bershader 1995). Compressible
vortex flow requires that four other parameters, in addition to Re, be considered:
the Mach number M, the Prandtl number Pr, as well as the temperature-dependent
values of viscosity µ and thermal conductivity κ.

Since the full equations are nonlinear and there are a large number of parame-
ters involved, the equations are difficult to solve analytically. In general, analytical
solutions require substantial simplification of the boundary conditions, the initial con-
ditions, and the form of the equations. For example, Chiocchia (1989) and Ardalan,
Meiron & Pullin (1995) assumed steady, inviscid flow and applied hodograph trans-
formations to solve ideal-fluid, compressible vortex problems. Earlier, Mack (1960)
and Bellamy-Knights (1980) investigated steady, viscous, compressible vortex flows.
In both of these works, the boundary conditions at the centre of the vortex were
simplified by driving the flow with a rotating circular cylinder. Colonius et al. (1991)
were able to find analytical solutions for compressible free vortices by examining the
full equations in the limit of high Reynolds number and low Mach number. Two
different non-self-similar initial conditions were used for the calculations. In the first
case the vortex initially had a constant density; in the second case the vortex was
initially homentropic.

Among techniques for finding analytical solutions to compressible vortex flow, the
search for symmetry under a Lie group is a natural approach. But, since the full
equations are not invariant under translations of the thermodynamic variables (von
Ellenrieder 1998) they will not admit similarity solutions for compressible free vortex
flow. This is one of the main reasons why analytical solutions for fully compressible,
viscous, free vortices do not exist. However, as explained in § 2.3, the perturbation
equations and the incompressible reference flows presented by Colonius et al. (1991)
are invariant under a three-parameter Lie group. The group allows a rich set of
similarity solutions to be found for a slightly compressible vortex.

The similarity equations and variables are developed in the following section. In
§ 3 solutions for an Oseen vortex (Oseen 1912) reference flow and a Taylor vortex
(Taylor 1918) reference flow are given. Integrals which relate the dissipation and
pressure work to the kinetic and internal energy in a slightly compressible vortex flow
are derived. A summary of the key findings is given in § 4.

2. Governing equations
2.1. Non-dimensional forms and perturbation expansions

Our point of departure is the set of perturbation equations formulated by Colonius
et al. (1991). These equations are derived with the assumptions that (i) there are no
acoustic waves present in the flow, (ii) the convective and diffusive timescales are the
same, (iii) the far-field flow conditions are constant, and (iv) µ and κ are constant.

The tangential and radial velocities (v and u, respectively) and the thermodynamic
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variables (pressure p, density ρ, and temperature T ) are scaled as

r̃ =
r

li
, t̃ =

vmt

li
, ṽ =

v

vm
,

ũ =
u

vm
, ρ̃ =

ρ

ρ∞
, p̃ =

p− p∞
ρ∞v2

m

,

T̃ =
T

T∞
, R̃e =

ρ∞vmli
µ

, P r =
µCp

κ
,

M =
vm

a∞
, τ =

t̃

R̃e
.


(2.1)

In (2.1) vm is a reference velocity (the maximum tangential velocity in the vortex’s
initial velocity profile) and li is the radial location of vm. Far-field flow quantities
are denoted with the subscript ∞, r is the radial coordinate, and t is time. The
term p̃ is similar to the standard definition of the dynamic pressure coefficient in
aerodynamics and represents the normalized deviation of the local pressure p from
the far-field pressure p∞. The specific heat at constant pressure is denoted as Cp
(assumed constant) and a is the speed of sound.

Each of the dependent flow variables is approximated as

f̃ = f̃0 +M2f̃1 + O(M4), (2.2)

where f̃ represents any dependent flow variable. Terms of O(1) are designated with a
subscript 0 and belong to the incompressible reference flow. O(M2) terms are denoted
by the subscript 1 and are the compressible perturbations to the reference flow.

2.1.1. The simplified equations

In the reference flow the radial velocity is necessarily zero, ũ0 = 0, the density and
temperature are uniform, ρ̃0 = T̃0 = 1, the pressure gradient balances the centrifugal
forces created by the tangential velocity, and the tangential velocity is governed by a
diffusion equation

∂p̃0

∂r̃
=
ṽ2

0

r̃
, (2.3a)

∂ṽ0

∂τ
=

∂

∂r̃

[
1

r̃

∂

∂r̃
(r̃ṽ0)

]
. (2.3b)

The corresponding boundary conditions are

r̃ = 0: ṽ0 = 0,
∂p̃0

∂r̃
= 0, (2.4a)

and

r̃ →∞: ṽ0 → 0, p̃0 → 0. (2.4b)

The incompressible vorticity

ω̃0 =
1

r̃

∂

∂r̃
(r̃ṽ0) (2.5)

is governed by the equation

∂ω̃0

∂τ
=

1

r̃

∂

∂r̃

(
r̃
∂ω̃0

∂r̃

)
, (2.6)

where it is assumed that ω̃0 is bounded at r̃ = 0, and ω̃0 → 0 as r̃ →∞.
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To O(M2) the equations for conservation of mass, radial momentum, tangential
momentum, energy, and the equation of state, respectively, are

∂ρ̃1

∂τ
+

1

r̃

∂

∂r̃
(r̃ũ∗1) = 0, (2.7a)

∂p̃1

∂r̃
=
ρ̃1ṽ

2
0

r̃
+

2ṽ1ṽ0

r̃
, (2.7b)

ρ̃1

∂ṽ0

∂τ
+
∂ṽ1

∂τ
+ ũ∗1

∂ṽ0

∂r̃
+
ṽ0ũ
∗
1

r̃
=

∂

∂r̃

[
1

r̃

∂

∂r̃
(r̃ṽ1)

]
, (2.7c)

∂T̃1

∂τ
+

(γ − 1)

r̃

∂

∂r̃
(r̃ũ∗1) = γ(γ − 1)

(
∂ṽ0

∂r̃
− ṽ0

r̃

)2

+
γ

P r

1

r̃

∂

∂r̃

(
r̃
∂T̃1

∂r̃

)
, (2.7d)

γp̃0 = ρ̃1 + T̃1, (2.8)

where ũ∗1 = ũ1R̃e. Equation (2.8) implies that, for a slightly compressible vortex, the
O(M2) density and temperature perturbations are of the same order of magnitude as
the O(1) pressure variation.

The O(1) entropy variation of the reference flow is s̃0 = 0. The O(M2) compressible
entropy perturbation, local rate of entropy change, and vorticity are governed by

s̃1 = p̃0 − ρ̃1, (2.9a)

∂s̃1

∂τ
= (γ − 1)

(
∂ṽ0

∂r̃
− ṽ0

r̃

)2

+
1

r̃P r

∂

∂r̃

(
r̃
∂T̃1

∂r̃

)
, (2.9b)

and
∂ω̃1

∂τ
− 1

r̃

∂

∂r̃

(
r̃
∂ω̃1

∂r̃

)
=
∂ρ̃1

∂τ
ω̃0 −

(
∂ρ̃1

∂r̃
+ ũ∗1

)
∂ω̃0

∂r̃
− ρ̃1

∂ω̃0

∂τ
, (2.9c)

respectively.
Using (2.7a, d), and (2.8) we can derive a partial differential equation for the

evolution of T̃1 in terms of the reference flow velocity ṽ0 and pressure p̃0:

∂T̃1

∂τ
− 1

r̃P r

∂

∂r̃

(
r̃
∂T̃1

∂r̃

)
= (γ − 1)

[(
∂ṽ0

∂r̃
− ṽ0

r̃

)2

+
∂p̃0

∂τ

]
. (2.10)

Here, the equation set (2.7a–c), (2.8), and (2.10) will be used to describe the evolution
of the O(M2) quantities; the related boundary conditions are

r̃ = 0: ũ1 = 0, ṽ1 = 0,
∂p̃1

∂r̃
= 0,

∂T̃1

∂r̃
= 0,

∂ρ̃1

∂r̃
= 0, (2.11a)

r̃ →∞: ũ1 → 0, ṽ1 → 0, p̃1 → 0, T̃1 → 0, ρ̃1 → 0. (2.11b)

After the reference flow variables p̃0 and ṽ0 are determined, one can solve for the
O(M2) perturbation quantities.

2.2. Reference flow solutions

Following Colonius et al. (1991) the reference flow is given by de Neufville’s (1957)
incompressible vortex solutions. The reference flow vorticity is

ω̃0 =
Cme−ηLm(η)

(τ+ τi)(m+1)
. (2.12)
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Here, the parameter m is the eigenvalue of (2.6) when ω̃0 is separated in the variables
τ and

η =
r̃2

4(τ+ τi)
. (2.13)

The quantity Cm/τ
(m+1)
i is the amplitude (at r̃ = 0) of the mth self-similar vorticity so-

lution (when τ = 0) and Lm is the mth-order Laguerre polynomial. The corresponding
velocity and pressure are

ṽ0 =


2C0

r̃
[1− exp (−η)], m = 0

− 2Cm
r̃(τ+ τi)m

exp (−η)[Lm(η)− Lm−1(η)], m > 1,
(2.14)

and

p̃0 = −
∫ ∞
r̃

ṽ2
0

r̃
dr̃ =

−C2
m

2(τ+ τi)(2m+1)

∫ ∞
η

exp (−2η)[Lm(η)− Lm−1(η)]2

η2
dη, (2.15)

respectively.
The radial distributions of vorticity, tangential velocity, and pressure are plotted in

figure 1(a–c) for the first three eigenvalues m, with Cm = 1, τ = 0, and τi = 1. Notice
that ω̃0 = 1 at r̃ = 0 for all three solutions shown. However, as m increases both the
corresponding maximum tangential velocity and maximum pressure drop decrease.
The reference flow solution for m = 0 is the classical Oseen vortex (Oseen 1912) and
the solution for m = 1 is Taylor’s vortex (Taylor 1918).

A general expression for the conserved quantity corresponding to each reference
flow solution is given by

Am = 2π

∫ ∞
0

r̃2mω̃0r̃dr̃ (2.16)

(von Ellenrieder 1998). Each Am is the 2mth area moment of the mth vorticity solution.
When m = 0 the total circulation A0 of the fluid is invariant. For m = 1 the total
angular momentum of the flow M is constant and A1 = −2M. Evaluating (2.16) we
find that Cm is related to the integral invariant Am:

Cm =
Am

(−1)m4(m+1)(m!)π
. (2.17)

2.3. Similarity forms of perturbation terms and equations

Both the incompressible reference flow equations and the compressible perturbation
equations are invariant under a three-parameter Lie group. The group consists of
stretching transformations in the radial coordinate and each dependent flow variable,
as well as a translation in time. Similarity forms can be found for each dependent flow
variable and explicitly yield the decay rate of each flow quantity; the mathematical
details are given in von Ellenrieder(1998).

The similarity variables corresponding to the O(M2) perturbed quantities are

σ(η) = T̃1(τ+ τi)
(2m+1), β(η) = ρ̃1(τ+ τi)

(2m+1), (2.18a, b)

α(η) = ũ∗1(τ+ τi)
(2m+3/2), φ(η) = ṽ1(τ+ τi)

(3m+3/2), (2.18c, d )

ψ(η) = p̃1(τ+ τi)
(4m+2), ζ(η) = s̃1(τ+ τi)

(2m+1), (2.18e, f )
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Figure 1. Radial distributions of (a) vorticity ω̃0, (b) tangential velocity ṽ0, and (c) pressure p̃0, for
Cm = 1, τ = 0, and τi = 1: ——–, m = 0; – – – –, m = 1; — ·—, m = 2.
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δ(η) =
∂s̃1

∂τ
(τ+ τi)

2(m+1), $(η) = ω̃1(τ+ τi)
(3m+2). (2.18g, h)

Note that the linearity of (2.7a–c), (2.8), and (2.10) allows one to superpose O(M2)
self-similar solutions, which are found using (2.18), to construct any O(M2) initial
condition. But, since the decay rate of each flow variable is dependent upon the
eigenvalue m, the motion of a decaying vortex which is not initially self-similar
will asymptotically approach the self-similar solution that corresponds to the lowest
eigenvalue.

2.3.1. Perturbation equations

Substituting the similarity forms of the perturbation variables (2.18a–e) into equa-
tions (2.7a–c), (2.8), and (2.10), the partial differential equations describing the O(M2)
perturbations are reduced to the following set of ordinary differential equations:

d

dη
(αη1/2) = η

dβ

dη
+ (2m+ 1)β, (2.19a)

2η
dψ

dη
= βV 2 + 2φV , (2.19b)

η
d2φ

dη2
+ (η + 1)

dφ

dη
+

[
3(m+ 1

2
)− 1

4η

]
φ = (α− βη1/2)Ω − mβV , (2.19c)

β = γP− σ, (2.19d)

η

Pr

d2σ

dη2
+

(ηPr + 1)

Pr

dσ

dη
+ (2m+ 1)σ = (γ − 1)

[
(2m+ 1)P+

V 2

2
−
(
Ω − V

η1/2

)2
]
.

(2.19e)

Here V and P are the similarity forms of the incompressible velocity and pressure:

V (η) = ṽ0(τ+ τi)
(m+1/2), P(η) = p̃0(τ+ τi)

(2m+1). (2.20a, b)

Transforming (2.11a) and (2.11b), gives the boundary conditions for (2.19a–e):

η = 0: α = 0, φ = 0, η1/2 dψ

dη
= 0, η1/2 dσ

dη
= 0, η1/2 dβ

dη
= 0, (2.21a)

and

η →∞: α→ 0, φ→ 0, ψ → 0, σ → 0, β → 0. (2.21b)

The self-similar forms of the equations for the O(M2) entropy, dissipation, and
vorticity, (2.9a–c) respectively, are

ζ = −(γ − 1)P+ σ, (2.22a)

δ = (γ − 1)

(
Ω − V

η1/2

)2

+
1

Pr

d

dη

(
η

dσ

dη

)
, (2.22b)

and

η
d2$

dη2
+ (η + 1)

d$

dη
+ (3m+ 2)$ = mβΩ + η

dβ

dη

(
Ω +

dΩ

dη

)
+ η1/2(α− η1/2β)

dΩ

dη
.

(2.22c)
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The solutions for the homogeneous parts of (2.19e) and (2.22c) are

σh = Bm exp (−η1)L2m(η1) (2.23)

and

$h = Wm exp (−η)L3m+1(η), (2.24)

where η1 = ηPr, Bm and Wm are arbitrary constants, and the subscript h refers to the
homogeneous part of each solution. The homogeneous part of the equation for the
O(M2) tangential velocity (2.7c) and the O(1) tangential velocity equation (2.3b) have
the same form. Using (2.3b), (2.20), and (2.19c) one can show that the forms of φh
and V will be somewhat alike:

φh = − (3m+ 1)Qm exp (−η)

η1/2
[L3m+1(η)− L3m(η)], (2.25)

where Qm is an arbitrary constant.
In the next section (2.19)–(2.25) are used to find self-similar solutions for the

O(M2) compressible perturbations to both an incompressible Oseen vortex and an
incompressible Taylor vortex.

3. Solutions
3.1. Analytical solutions for the slightly compressible Taylor vortex

For m = 1, (2.12), (2.14), and (2.15), can be used to reduce (2.19e) to the following
relation:

η1

d2σ

dη2
1

+ (η1 + 1)
dσ

dη1

+ 3σ = −C2
1 (γ − 1) exp (−2η)

[
η2 − η

2
+

3

4

]
, (3.1)

where, again, we take η1 = ηPr. Analytical solutions to (3.1) for a general value of
Pr can be found using the Method of Frobenius. The particular solution is

σp = −C2
1 (γ − 1)η1 exp (−2η1/Pr)

∞∑
n=0

Dn(2η1)
n, (3.2)

where

D0 =
3

4
,

D1 =

(
1

2Pr
− 3

8

)
,

D2 =

(
15Pr2 − 44Pr + 32

144Pr2

)
,

...

Dn = − (4− 2Pr)Dn−2 + [(2n+ 6)Pr2 − 4Pr(2n+ 1)]Dn−1

4(n+ 1)2Pr2
.



(3.3)

Using (2.23) we find that the homogeneous part of the solution for m = 1 is

σh =
B1

2
exp (−η1)(η

2
1 − 4η1 + 2), (3.4)
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and the complete solution is σ = σh + σp. Using (2.15), (2.19d), (2.22a), and (3.2)–(3.4)
β and ζ are easily found. However, solving equations (2.19a–c) for α, ψ, and φ is
difficult because (3.2) contains a slowly converging series.

Luckily, when Pr = 1, it is relatively easy to find simple closed-form solutions for
most of the O(M2) terms. In this case η = η1, and the particular solution to (3.1) is

σp = −C
2
1 (γ − 1)

4
exp (−2η)(2η + 1). (3.5)

The total solution for σ is given by

σ = −C
2
1 (γ − 1)

4
exp (−2η)(2η + 1) +

B1

2
exp (−η)(η2 − 4η + 2). (3.6)

Using this result and (2.15) in (2.19d) and (2.22a) gives the solutions for β and ζ:

β =
C2

1

4
exp (−2η)[2η(γ − 1)− 1]− B1

2
exp (−η)(η2 − 4η + 2), (3.7)

and

ζ = −C
2
1 (γ − 1)

2
η exp (−2η) +

B1

2
exp (−η)(η2 − 4η + 2). (3.8)

Integrating (2.19a), we find the similarity parameter corresponding to the O(M2)
radial velocity

α =
C2

1 exp (−2η)

4η1/2
[(2− γ) + η(1− 2γ) + 2η2(γ − 1)

]
−B1η

1/2 exp (−η)

2
[η2 − 6η + 6] +

G1

η1/2
. (3.9)

The homogeneous solution for φ, which can be found using (2.25), is

φh = −Q1η
1/2 exp (−η)

6
(η3 − 12η2 + 36η − 24), (3.10)

where Q1 is a constant.

3.1.1. Initial/boundary conditions

The constants C1 and τi are determined so that ṽ0 = 1, at r̃ = 1, when τ = 0:

τi = 1
2
, C1 = e1/2/2.

The radial velocity in the centre of the vortex must be zero from (2.21a), so

G1 = −C
2
1 (2− γ)

4
.

For this value of G1, (3.9) shows that far from the vortex core, as η → ∞, the radial
velocity is

ũ∗1 ∼ G1

η1/2(τ+ τi)7/2
= − C

2
1 (2− γ)

2r̃(τ+ τi)3
. (3.11)

This result matches the prediction for the far-field radial velocity in the Taylor vortex
made by Colonius et al. (1991).

The solutions for σ, β, and ζ (3.6)–(3.8) contain polynomials in η. All powers of η
in these polynomials are greater than zero. For this reason the boundary conditions
(2.21a) are trivially satisfied for any value of B1. Here we will determine B1 so that
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Figure 2 (a–c). For caption see page 304.
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Figure 2 (d–f ). For caption see page 304.
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(g)
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r̃
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Figure 2. Exact solutions for a slightly compressible Taylor vortex with τi = 1
2
, Pr = 1, γ = 1.4,

C1 = e1/2/2, B1e = −1.67 × 10−2. Results for four different times are shown: ——–, τ = 0;
– – – –, τ = 1

4
; — ·—, τ = 1

2
, and · · · · · ·, τ = 1. Reference flow quantities are plotted in (a) vorticity,

(b) tangential velocity, and (c) pressure. The compressible perturbations are shown in (d) temperature,
(e) density, (f) entropy, and (g) radial velocity.

ρ̃1(r̃ = 0, τ = 0) is close to the value found in the experiments of Mandella (1987).
The depth of the vortex density well is defined as

ρ(r̃ = 0, τ)− ρ∞
ρ∞

= M2ρ̃1(r̃ = 0, τ). (3.12)

If, at τ = 0, the depth of the density well is 0.55, and the Mach number of the vortex
is M = 0.67, then ρ̃1(r̃ = 0, τ = 0) = −1.23. The forms of (3.2) and (3.5) differ, so
in order for the series and exact solutions for the O(M2) density, temperature, and
entropy perturbations to match, (2.19d), (3.2), and (3.5) require that B1 for the series
solution (denoted B1s), and B1 for the exact solution (denoted B1e) are related in the
following way:

B1s = B1e − C2
1 (γ − 1)

4
. (3.13)

Using an initial density-well depth of 0.55, γ = 1.4, and B1s = −8.47 × 10−2,
gives B1e = −1.67 × 10−2. The exact solutions for both the reference flow and the
compressible perturbations are plotted in figure 2. Also, the series solutions with
Pr = 0.5, 0.72, and 1.0 are given in figure 3.

The specification of the initial density-well depth is a departure from the boundary
conditions in (2.21a). Rather than only requiring that the gradient of the density is
zero at r̃ = 0, we are also specifying an initial value for the density at the origin.
The boundary conditions in (2.21a) are invariant under the similarity transformation
group, but the initial density-well depth condition for ρ̃1 is not. The resulting shape
of the density distribution is dependent on the initial value chosen for ∆ρ∗. Since
the coefficient B1 is determined by this initial ∆ρ∗ the distributions of the self-similar
solutions are dependent on the value of B1 and can differ substantially as B1 is varied.
When B1 is increased the temperature T̃1 at r̃ = 0 increases and can become positive;
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Figure 3. Pr dependence of the series solution with τi = 1
2
, τ = 0, γ = 1.4, B1s = −8.47 × 10−2,

C1 = e1/2/2. Radial distributions of O(M2) (a) temperature, (b) density, and (c) entropy, and are
shown for three different values of Pr: ——–, Pr = 1.00; – – – –, Pr = 0.72; — ·—, and Pr = 0.50.
The solution is approximated by the first 100 terms of the infinite series (3.2).
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Figure 4 (a–c). For caption see facing page.
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Figure 4. Variation of the exact solution with τi = 1
2
, τ = 0, Pr = 1, γ = 1.4, C1 = e1/2/2. Radial

distributions of O(M2) (a) temperature, (b) density, (c) entropy, and (d) radial velocity, are shown
for three different values of B1e: – – – –, B1e = 2 × 10−2; ——–, B1e = −2 × 10−2; — ·—, and
B1e = −6× 10−2.

m 0 1 2 3 4

Cm 0.699 1
2
e1/2 1.6402 4.5879 15.507

τi 0.199 1
2

0.7964 1.0922 1.387

Table 1. Values of Cm and τi that give ṽ0(r̃ = 1, τ = 0) = 1 for the first five eigenvalues.

the corresponding value of density ρ̃1 decreases. The trends in ρ̃1 and T̃1 are reversed
when B1 is reduced (see figure 4). Since (2.21a) is still satisfied after applying the
initial density-well depth condition the solutions are self-similar in time.

Lastly, note that by reducing the number of independent variables used to describe
the problem (r̃, τ → η), the need to arbitrarily assign initial conditions for each
flow variable at every point in the flow is eliminated. One does not need to invent an
artificial, non-physical, initial condition (such as a compressible vortex with an initially
constant density at all radial locations) – as is required for non-self-similar solutions.

3.2. Numerical solutions

The Oseen vortex (m = 0) and the Taylor vortex (m = 1) are both commonly used to
model two-dimensional incompressible vortices. Therefore, it is interesting to compare
the self-similar solutions of the compressible perturbations to these reference flows.

The O(M2) perturbation equations (2.19a, d, e) and (2.22a) are easy to numerically
solve. As in § 3.1.1 above, the reference flow constants Cm and τi are fixed such
that ṽ0 = 1 at r̃ = 1 when τ = 0. For reference, table 1 lists the values of Cm
and τi which satisfy this condition for the first five eigenvalues. Equation (2.19e) is
first numerically integrated to find the similarity parameter σ, which corresponds to
the O(M2) temperature variation. The second-order Runge–Kutta scheme is used to
perform the integration for 0 6 η 6 10 on a 1000 point grid. The integration is started
at η = 0 and is initialized so that there is no heat flux at the origin (∂T̃1/∂r̃ = 0), and
the temperature variation at r̃ = 0 corresponds to a density variation with a density-
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Figure 5. Pr dependence of the numerical solution for an Oseen reference flow. τi = 0.199, τ = 0,
γ = 1.4, C0 = 0.699. Radial distributions of O(M2) (a) temperature, (b) density, (c) entropy, and
(d) radial velocity are shown for three different values of Pr: ——–, Pr = 1.00; – – – –, Pr = 0.72;
— ·—, and Pr = 0.50.
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Figure 6. Pr dependence of the solution for a Taylor reference flow. τi = 1/2, τ = 0, γ = 1.4,

C1 = e1/2/2. Radial distribution of the O(M2) radial velocity is shown for three different values of
Pr: ——–, Pr = 1.00; – – – –, Pr = 0.72; — ·—, and Pr = 0.50.

well depth of 0.55. The forcing terms in the equations are determined using the O(1)
analytical solutions for the velocity (2.14) and pressure (2.15). Equations (2.18a–c, f)
together with (2.19a, d) and (2.22a) are then used to calculate ũ∗1, ρ̃1, and s̃1, respectively.

The numerical solutions for an Oseen vortex reference flow with Pr = 0.5, 0.72,
and 1.0 are given in figure 5. The numerical solutions of T̃1, ρ̃1, and s̃1 for the Taylor
vortex and these values of Pr duplicate the series solutions already shown in figure
3. Therefore, only the solution for ũ∗1 is shown in figure 6.

The radial extent of both the Oseen and the Taylor vortex reference flows is larger
for smaller values of Pr. However, as shown in figure 3 the temperature, density, and
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entropy distributions for the Taylor vortex exhibit peaks near the core radius at the
smaller Prandtl numbers. The entropy distributions of both reference flows contain
local maxima at the origin when Pr = 0.5 and 0.72, but entropy peaks at the core
radius of the vortex do not appear when the reference flow is an Oseen vortex.

3.3. General observations

3.3.1. Prandtl number dependence

While the reference flow terms are independent of the Prandtl number, Pr exerts
its influence on all of the O(M2) quantities through the forcing terms of (2.19a–e).
Consider the Prandtl number dependence of the O(M2) solutions (figure 3). Pr
represents the ratio of viscous to thermal diffusion. When Pr = 1, heat and viscosity
diffuse at the same rate; when Pr < 1, heat diffuses faster. Therefore, when the
temperature profiles for different values of Pr are plotted on the same graph, and
each profile is set to the same temperature at r̃ = 0 and τ = 0, the temperature
distribution for the curve with the smaller value of Pr will extend further from the
origin (figure 3a). Also, as Pr is lowered, the entropy distribution changes because
the heat conduction term in the dissipation equation (2.9b) varies inversely with Pr.
As Pr decreases, heat conduction has a greater effect on the entropy variation s̃1.

3.3.2. Radial velocity

The Prandtl number dependence of the solutions also reveals a connection between
the local amount of compression in a vortex and the local radial velocity. By sym-
metry, the radial velocity is necessarily zero at the origin. In the far field the vortex
behaves like a two-dimensional, incompressible sink flow with ũ∗1 ∼ −1/r̃; hence, the
vortex is always compressed (Colonius et al. 1991). Between these limiting values of
r̃, Pr has a strong effect on the local values of ũ∗1 and ρ̃1. From figures 5(d ) and
6 one can see that, starting from just inside the vortex core, the magnitude of the
radial velocity can decrease non-monotonically for Pr 6= 1 (for both the Oseen and
the Taylor vortex). The corresponding plots of ρ̃1 (figure 5b and 3b, respectively)
reveal that, from curve to curve, at those radial locations where the fluid is more
compressed, the magnitude of the radial velocity is smaller. Hence, the amount of
compression in the flow affects the radial velocity on both a large scale (the far-field
flow behaviour) and on a small scale, local sense.

3.3.3. The entropy

Can the compressible self-similar vortex be homentropic? In the homentropic case,
s̃1 = ζ = 0. If this is true, then (2.22a) requires

(γ − 1)P = σ. (3.14)

Using this relation to replace σ with P in (2.19e), we see that P must depend on Pr in
order for the vortex to be homentropic. However, since the base flow is incompressible
the base flow pressure must be independent of Pr. Therefore, a slightly compressible,
self-similar vortex cannot be homentropic. Note that if a slightly compressible vortex
is not self-similar, one can specify an initial condition where the vortex is homentropic
(Colonius et al. 1991). However, this condition is only valid at the initiation of the
flow; the vortex may then evolve to a self-similar state.

In accordance with the Second Law of Thermodynamics, the total amount of
entropy in the flow must increase. Far from the core of the vortex the entropy is
constant, so for r̃ → ∞ the entropy flux is zero. Therefore, the following inequality
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must hold for the total entropy in the vortex flow:

d

dτ

∫ ∞
0

s̃1r̃dr̃ > 0. (3.15)

As a partial check of the O(M2) perturbation solutions for the Taylor vortex, we
substitute (2.13), (2.18f ) and (3.8) into integral (3.15) to verify that the Second Law
is not violated. The result is

d

dτ

∫ ∞
0

s̃1r̃dr̃ =
C2

1 (γ − 1)

2(τ+ τi)3
, (3.16)

which is always > 0 and so satisfies (3.15). Because the total far-field heat flux into
or out of the vortex is zero (see § 3.3.4), the net entropy produced in the flow is due
to viscous dissipation. The magnitude of this dissipation depends on C1.

3.3.4. Entropy production

The first term on the right-hand side of (2.9b) is proportional to the rate of
entropy production by viscous dissipation, and the second term is proportional to the
rate of change of entropy due to heat conduction. This equation has an interesting
consequence for the total heat flux in a slightly compressible vortex. Using the fact
that s̃1 → 0 in the far field, together with the O(1) solutions for ṽ0 (2.14), one can show
that the divergence of the heat flux into or out of the vortex in the far field is zero,

lim
r̃→∞

1

r̃

∂

∂r̃

(
r̃
∂T̃1

∂r̃

)
= 0. (3.17)

Integrating (3.17) with respect to r̃ reveals that the far-field heat flux must also be zero,

lim
r̃→∞ r̃

∂T̃1

∂r̃
= 0

in order to satisfy the requirement that T̃1 → 0 for r̃ → ∞. Because of this, the net
heat flux within the vortex is also zero∫ ∞

0

1

r̃

∂

∂r̃

(
r̃
∂T̃1

∂r̃

)
r̃dr̃ = 0.

Therefore, regardless of whether or not a weakly compressible vortex is self-similar,
if the overall temperature in the core of the vortex increases, the temperature rise
is not caused by the conduction of heat from the far field into the vortex. It can
only be caused by viscous dissipation and pressure work: the total viscous work in
a flow can be split into a part which is responsible for deforming fluid particles (the
dissipation) and a second part which accelerates fluid particles (Thompson 1988) – the
acceleration part of the viscous work affects the kinetic energy in the flow, but does
not increase the temperature of the fluid; see § 3.3.5. To state this in another way,
the form of the perturbation equations limits the solutions to those cases for which
one asymptotically obtains a uniform temperature (as the vortex decays) without the
‘feed’ of heat from infinity.

Most of the local entropy changes occurring in the core of a self-similar, slightly
compressible Taylor vortex are caused by heat conduction; since there is no net heat
flux into the vortex the total entropy change produced by heat conduction is zero. To
see this, examine (2.9b) again. The rate of change of entropy is plotted in figure 7 for
Pr = 1 at several different times. The maxima of ∂s̃1/∂τ correspond to the minima
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Figure 7. Entropy production in the Taylor vortex when Pr = 1, C1 = e1/2/2, τi = 1
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Figure 8. Comparison of entropy production by heat conduction and viscous dissipation in the
Taylor vortex when τ = 0, C1 = e1/2/2, τi = 1

2
: ——–, viscous dissipation terms; and heat conduction

terms; for – – – –, Pr = 1, — ·—, Pr = 0.72, · · · · · ·, Pr = 0.5.

of s̃1 (figure 2f ). In figure 8 each of the terms in (2.9b) is plotted separately. This
allows us to compare the relative magnitudes of the rate of entropy changes due to
viscous dissipation and due to heat conduction. In the core of the vortex r̃ 6 1, the
magnitude of the heat conduction term is larger than the viscous dissipation term.
Note that the part of ∂s̃1/∂τ due to heat conduction is larger than zero, because heat
is flowing into the cold core of the vortex. For r̃ ≈ 1 and longer, the rate of entropy
change from heat conduction is less than zero because heat is flowing away from this
region and into the vortex core. The rate of dissipation from viscous diffusion is, of
course, always greater than zero. As shown in figure 8, the series solution for σp, (3.2),
can be used with (2.18f ) and (2.22b) to reveal that the rate of entropy change from
heat conduction increases in magnitude as the Prandtl number decreases; when µ is
constant, heat diffuses faster, but the rate of viscous diffusion remains the same.
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3.3.5. Vortex energetics

The total amount of pressure work performed on a fluid volume is given by the
integral of the product of the pressure and fluid velocity at the volume’s surface:∫

∂V

pu · dS =

∫
V

∇ · (pu)dV =

∫
V

(u · ∇p+ p∇ · u)dV. (3.18)

Here we have used Stokes’ Theorem to convert the surface integral into a volume
integral and split the total pressure work into two terms. The first term u·∇p represents
the work performed by the pressure gradients in moving fluid inside the volume and
the second term p∇ · u is the work done by pressure forces in locally compressing
the fluid at each point within the volume. In the far field, u ∼ −1/r, the pressure is
constant, and the surface area of the two-dimensional flow field is proportional to r.
Therefore, from the surface integral in (3.18) we see that the external pressure field
surrounding a slightly compressible free vortex performs a net amount of work on the
flow as the vortex decays. As viscous shear stresses decrease the tangential velocity,
the centrifugal force of the flow’s rotation relaxes and the fluid in the vortex core
is compressed by the external pressure field. This pressure work, in addition to heat
released by the dissipation of the flow’s kinetic energy, increases both the temperature
and density of the vortex. To see this in more detail, we will consider the two parts of
the total pressure work and their separate effects on the kinetic and internal energy
of the flow.

The scalar product of the velocity and the momentum equations gives an expression
for the balance of kinetic energy in a flow. Note that the kinetic energy associated
with the radial component of the velocity does not enter our analysis because it is
O(M4). Integrating the product of ṽ0 and the tangential momentum equation (2.3b)
gives an expression for the total O(1) kinetic energy in the vortex:

d

dτ

∫ ∞
0

ṽ2
0

2
r̃dr̃ = −

∫ ∞
0

(
∂ṽ0

∂r̃
+
ṽ0

r̃

)2

r̃dr̃. (3.19)

We see that since the reference flow is incompressible, only the work involved in
viscous dissipation decreases the total O(1) kinetic energy of the flow (Landau &
Lifshitz 1987).

The product of ṽ0 and (2.7c), as well as the use of (2.3a), gives an equation for the
O(M2) kinetic energy:

ρ̃1

∂

∂τ

(
ṽ2

0

2

)
+ ũ∗1

∂

∂r̃

(
ṽ2

0

2

)
+
∂

∂τ
(ṽ0ṽ1)

= −ũ∗1 ∂p̃0

∂r̃
+ ṽ1

∂

∂r̃

[
1

r̃

∂

∂r̃
(r̃ṽ0)

]
+ ṽ0

∂

∂r̃

[
1

r̃

∂

∂r̃
(r̃ṽ1)

]
. (3.20)

Integrating this expression over the entire flow field we find the total O(M2) kinetic
energy in the flow

d

dτ

∫ ∞
0

(
ρ̃1ṽ

2
0

2
+ ṽ1ṽ0

)
r̃dr̃

= −
∫ ∞

0

ũ∗1
∂p̃0

∂r̃
r̃dr̃ − 2

∫ ∞
0

(
∂ṽ0

∂r̃
+
ṽ0

r̃

)(
∂ṽ1

∂r̃
+
ṽ1

r̃

)
r̃dr̃. (3.21)

From this equation, (2.13), (2.20), and (2.18b,d ), we see that the time derivative of the
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total O(M2) kinetic energy varies as 1/τ4m+2. Since the total O(M2) kinetic energy is a
perturbation to the total O(1) kinetic energy, it may be either positive or negative in
sign. Since this term may be negative, the second term on the right-hand side of (3.21),
which represents the contribution of viscous forces, is not necessarily positive-definite.
However, in the case of both the Oseen and the Taylor vortex, the first term on the
right-hand side of (3.21), which gives the u · ∇p part of the pressure work in (3.18),
always increases the O(M2) kinetic energy of the vortex. This happens because the
radial velocity in these two vortices is negative for r̃ > 0.

Turning now to the internal energy of the flow e, let ẽ = CvT∞e. With this choice
of scaling, ẽ = T̃ and from (2.7d ) we find an equation for the balance of internal
energy in the flow:

∂ẽ1

∂τ
= γ(γ − 1)

(
∂ṽ0

∂r̃
− ṽ0

r̃

)2

+
γ

P r

1

r̃

∂

∂r̃

(
r̃
∂T̃1

∂r̃

)
− (γ − 1)

r̃

∂

∂r̃
(r̃ũ∗1). (3.22)

Integrating this expression over the entire flow field gives

d

dτ

∫ ∞
0

ẽ1r̃dr̃ = γ(γ − 1)

∫ ∞
0

(
∂ṽ0

∂r̃
− ṽ0

r̃

)2

r̃dr̃ − (γ − 1)

∫ ∞
0

1

r̃

∂

∂r̃
(r̃ũ∗1)r̃dr̃; (3.23)

note that the integral of the heat flux is zero (see § 3.3.4).
Because the first term on the right-hand side of this equation is positive definite,

and since fluid is moving into the vortex, the total internal energy of the vortex always
increases in time. The second term on the right-hand side of (3.23) is proportional to
the O(M2) divergence of the flow and represents the total amount of work performed
by the pressure in compressing the fluid within the vortex. To see this note that, to
O(M2), the term −p∇ · u in (3.18) is given by

−p∇ · u→ −1

r̃

∂

∂r̃
(r̃ũ∗1), (3.24)

where (2.1) has been used to make the terms non-dimensional, and the Rayleigh–
Janzen expansion (2.2) was applied.

4. Concluding remarks
The equations which describe a two-dimensional, slightly compressible, vortex flow

are invariant under a three-parameter Lie group. The similarity solutions found with
this group give explicit expressions for the decay rates of each flow variable, and reveal
that non-self-similar, slightly compressible vortices will decay to a self-similar state.
Further, the solutions provide a rational means for specifying the initial conditions in
a slightly compressible vortex and to study numerical and experimental flows in the
light of their evolution to self-similar conditions.

The solutions for the radial velocity and density perturbations in weakly compress-
ible Oseen and Taylor vortices show that the amount of local compression in a vortex
strongly influences the local magnitude of the radial velocity – the magnitude of the
radial velocity is smaller in the more compressed regions of the flow.

Generally, self-similar, slightly compressible vortices are not isentropic, and there
is no net heat flux between the vortex centre and the far field. The total pressure
work on the vortex can be split into two parts, each of which separately affects the
internal and kinetic energy in the flow. The work performed by the pressure gradients
in moving fluid increases the O(M2) kinetic energy of the flow, and the pressure work
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of compressing the fluid increases the vortex’s internal energy. The effects of viscous
dissipation form the remainder of the terms in both the O(M2) kinetic and internal
energy balance in the vortex.

This work was supported, in part, by the NASA Graduate Student Researchers
Program and the NASA Ames-Stanford Joint Institute for Aeronautics and Acoustics
NCC 2-55.
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